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Abstract

An analysis of so-called Early Warning Signals (EWS) is proposed to identify the spa-
tial origin of a sudden transition that results from a loss in stability of a current state.
EWS, such as rising variance and autocorrelation, can be indicators of an increased re-
laxation time (slowing down). One particular problem of EWS-based predictions is the5

requirement of sufficiently long time series. Spatial EWS have been suggested to allevi-
ate this problem by combining different observations from the same time. However, the
benefit of EWS has only been shown in idealized systems of predefined spatial extent.
In a more general context like a complex climate system model, the critical subsystem
that exhibits a loss in stability (hotspot) and the critical mode of the transition may be10

unknown.
In this study we document this problem with a simple stochastic model of atmosphere

vegetation interaction where EWS at individual grid cells are not always detectable
before a vegetation collapse as the local loss in stability can be small. However, we
suggest that EWS can be applied as a diagnostic tool to find the hotspot of a sudden15

transition and to distinguish this hotspot from regions experiencing an induced tipping.
For this purpose we present a scheme which identifies a hotspot as a certain com-
bination of grid cells which maximize an EWS. The method can provide information
on the causality of sudden transitions and may help to improve the knowledge on the
susceptibility of climate models and other systems.20

1 Introduction

The existence of potential tipping points in the climate system has received growing
attention in recent years (Lenton et al., 2008; Lenton, 2011). In the narrower sense, a
tipping point occurs when a system becomes very susceptible to an external forcing
due to large positive feedbacks. In the extreme case the system’s attractor disappears25
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at a threshold value of the forcing (bifurcation) and the state has to approach a different
attractor.

In order to predict the collapse at a preconceived bifurcation or to distinguish such
changes in stability from random state transitions, it has been proposed to exploit sta-
tistical precursors of instabilities (Wiesenfeld, 1985a,b, Wiesenfeld and McNamara,5

1986), also called Early Warning Signals (EWS; Scheffer et al., 2009). The funda-
mental assumption behind their applicability is that the system is close to a deter-
ministic solution and perturbed by small fluctuations which can be described as white
noise. In case of the climate system this approach resembles Hasselmann’s concept
of stochastic climate models (Hasselmann, 1976). A common type of a bifurcation is10

the saddle-node bifurcation, where an eigenvalue approaches 0 (if time is continuous)
as the system’s stable fixed point loses stability. As a result, the linear relaxation time
of the corresponding mode increases (Wissel, 1984). This phenomenon has recently
been referred to as “critical slowing down” (Rietkerk et al., 1996; Scheffer et al., 2009;
Ditlevsen and Johnsen, 2010; Dakos et al., 2010, 2011; Lenton, 2011; Lenton et al.,15

2012b). To avoid confusion with the phenomenon of algebraic (rather than exponential)
decay in systems with second-order phase transitions (Strogatz, 1994) we will refer to
the increased relaxation time simply as “slowing down”. As a consequence of slowing
down, the system’s autocorrelation and variance can increase (Scheffer et al., 2009),
and the spectrum is reddened (Kleinen et al., 2003). Considering nonlinear terms in the20

stability analysis, it follows that the skewness of the state variable can also increase in
magnitude (Guttal and Jayaprakash, 2008).

However, the time scale of the external parameter change must be slow enough for
the system to stay close to equilibrium and to allow sufficiently long time series for a
statistically significant detection of EWS. A lack of detectability can thus impede any25

final conclusion on the existence of slowing down prior to an abrupt event. For exam-
ple, Dakos et al. (2008) detected a consistent increase in autocorrelation with 95%
probability in only 2 out of 8 paleo records (see their Table S3), and the results seem
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to depend on the choice of the analysis method, parameter values and the particular
proxy (Lenton et al., 2012a; Lenton et al., 2012b).

As the sampling error of EWS increases with autocorrelation, this problem becomes
worse close to the tipping point (for example see Dakos et al., 2012). Better resolved
time series may not always provide a solution as a sampling below the dynamic time5

scale of the system will not add relevant information.
To alleviate this problem, the use of spatial EWS has been suggested (Guttal and

Jayaprakash, 2009; Donangelo et al., 2010; Dakos et al., 2010): in analogy to the time
domain, spatial variance and cross-correlations between different units of a spatially
explicit system, as well as the spatial correlation length increase towards a tipping10

point. As an estimate of spatial indicators only involves data from one particular time
step, it is argued that the detection of slowing down can be more robust for spatial
EWS. However, in these previous studies on spatial EWS, the system’s boundaries are
known and well-defined. In addition, the application of the one-dimensional concept of
EWS to high-dimensional systems, though justified by theory (Ditlevsen and Johnsen,15

2010; Sieber and Thompson, 2012), in practice requires a priori knowledge on the
critical mode of the transition (Held and Kleinen, 2004). This critical mode indicates
in which direction in phase space the bifurcation occurs and thus how the information
should be combined to yield EWS.

In this study, we consider the case where both, the critical mode as well as the critical20

subsystem, are unknown. First, we demonstrate that under such general conditions
EWS may not be detectable at any particular location of the system.

Second, we propose an alternative application of EWS: the diagnostic detection of
critical regions of slowing down (hotspots) in time series.

The potential tipping point we analyse is the decline of North African vegetation cover25

in the mid-Holocene. In the Sahara and Sahel region, vegetation cover and precipita-
tion are considered to be linked by a positive feedback on timescales beyond years
(Claussen, 2009). The reasons are the effect of surface albedo on atmospheric sta-
bility (Charney, 1975), and the vegetation’s contribution to water recycling (Claussen,
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1997; Hales et al., 2004). In models with a large atmosphere-vegetation feedback,
two stable equilibria can exist (Claussen, 1998; Brovkin et al., 1998; Zeng and Neelin,
2000; Wang and Eltahir, 2000; Irizarry-Ortiz et al., 2003) and the gradual change in
orbital forcing can cause a sudden collapse in vegetation cover (Claussen et al., 1999;
Liu et al., 2006).5

Our study is structured as follows: in Sect. 2 we present a stochastic model of
atmosphere-vegetation interaction which produces a vegetation collapse when a con-
trol parameter is varied. We then use the stochastic model to document a specific limi-
tation of local EWS in a spatially explicit setting (Sect. 3). Based on this finding we ex-
plain our concept of a hotspot and present an algorithm for the detection of hotspots of10

slowing down (Sect. 4). We then discuss the performance of this algorithm for different
properties of the analyzed time series and different parameter choices and conclude in
Sect. 5 by discussing possible applications and limitations of our approach. An appli-
cation of our method to the results of an atmosphere-vegetation model of intermediate
complexity will be presented in a subsequent article.15

2 A stochastic model of atmosphere-vegetation interaction

In order to test the performance of EWS-related methods, we generate time series with
a simple stochastic model of vegetation dynamics in subtropical deserts. The structure
of this model is similar to the conceptual model of Brovkin et al. (1998), Wang (2004),
and Liu et al. (2006): annual precipitation P is a linear function of vegetation cover V ,20

while equilibrium vegetation cover V ∗ as a function of P is of sigmoidal shape (Fig. 1):

V ∗ =



0 if P < P1

1 if P > P2

1.03− 1.03

1+α
(

P − P1

exp(γ δ)

)2
otherwise,

(1)

647

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 643–682, 2012

Detecting hotspots
via slowing down –

Part 1

S. Bathiany et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with

P1 = β exp(γ δ/2)

P2 = β exp(γ δ/2)+
exp(γ δ)
√

0.03α
.

This function is the result of a semiempirical fit to observations (Brovkin et al., 2002)
and referred to as the original VECODE model in Bathiany et al. (2012b). Parameter5

values in all our simulations are α = 0.0011, β = 28, γ = 1.7×10−4, and δ = 9100. For
all time series we analyse in this study, P is always between P1 and P2.

If the conditions of a specific region are described with only one value of each, V and
P , the system’s deterministic equilibria can be depicted as intersections of the green
and blue curve in Fig. 1. Reducing the external parameter Pd describes the effect of de-10

creasing Northern Hemisphere summer insolation during the mid-Holocene, leading to
a decrease in precipitation. When the green equilibrium disappears the system experi-
ences a saddle-node bifurcation and vegetation cover has to collapse to the remaining
desert state.

We extend this conceptual model by defining V and P for several elements with15

index i (for example to represent different grid cells in a climate model). At each of
the N elements equilibrium vegetation cover depends only on the local precipitation
according to V ∗(P ). Vegetation cover is updated every (yearly) timestep via the dynamic
equation

V t+1
i = V t

i +
V ∗(P t

i )− V t
i

τ
+σV η

t
i . (2)20

Following Liu et al. (2006) we fix the time scale τ to 5 yr. Due to atmospheric water
transport and circulation changes, local precipitation Pi at a particular time t depends
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on vegetation cover at all elements:

Pi = P0i
+ siB︸ ︷︷ ︸
Pd

+
N∑
j=1

ki j Vj +σP ηi (3)

Due to the fast equilibration time of the atmosphere, Eq. (3) is not dynamic, and the
Vi are all the state variables of this dynamical system. The system is globally coupled
via k and in this regard differs from reaction-diffusion models with interactions between5

adjacent elements only. The choice of V ∗(P ) and the interaction matrix ki j determine
the strength and spatial structure of the atmosphere-vegetation feedback and thus the
stability properties of the system.

Brovkin et al. (1998), Wang (2004), and Liu et al. (2006) refer to the equilibrium pre-
cipitation in the absence of any vegetation as Pd. However, as Pd may differ at different10

elements, we split it into P0i
, which is variable in space but not in time, and siB with a

scalar B as external control parameter. The local sensitivity of background precipitation
to B is determined by parameters si , which are also variable in space, but not in time.
In physical terms, B describes the effect of climate forcings, while the numbers we use
are chosen arbitrarily.15

The Gaussian white noise process η with small noise level σ is uncorrelated in
space. We distinguish two types of noise but always use only one of them in our
experiments: σV controls perturbations which are added to Eq. (2) directly (additive
noise), while σP controls perturbations added to precipitation and whose impact on the
state variable Vi depends on the system’s state itself (multiplicative noise). Atmospheric20

variability is more realistically accounted for by the multiplicative noise case, whereas
the additive noise case may describe disturbances other than atmospheric conditions,
such as fire, diseases or grazing. Only the additive noise case allows rising variance
to be a generic indicator of slowing down (Dakos et al., 2012), although we will show
that in our specific model rising variance is also a useful indicator in the multiplicative25
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noise case. In all our simulations we use very small noise levels of σV = 0.00013 or
σP =2 mm yr−1.

3 Performance of Early Warning Signals (EWS) in spatially coupled systems

In the following, we address the limitations of EWS at individual elements in a spatially
inhomogenous setting. All statistical indicators are calculated from time series of the5

state variables Vi . Autocorrelations are determined for lag 1, crosscorrelations for lag
0.

3.1 First example: induced tipping

Consider the following simple system (system 1): 2 elements are coupled in a way
that the first element can be bistable due to a large local feedback between P and V .10

Precipitation at the second element depends on vegetation cover at the first element,
but not vice versa. We implement this property by chosing the interaction matrix

k =
(

300 200
0 0

)
and parameters

P0 =
(

0
100

)
15

s =
(

1
0.1

)
.

As B is reduced, element 2 (blue) collapses in response to the collapse of element
1 (red; Fig. 2a). The collapse of element 2 is thus not related to a substantial loss of
its own stability. It rather experiences the transition as an induced tipping caused by a20
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sudden change in external conditions that are imposed by element 1. The stability of
element 2 is hardly affected by B directly as the difference in s1 and s2 indicates.

Therefore, element 1 shows a clear increase in autocorrelation (Fig. 2b) and variance
(Fig. 2c) in the additive noise case, but element 2 does not. Only when the noise is mul-
tiplicative the system under consideration shows an increased variance (Fig. 2d; note5

that the scale differs from Fig. 2c by a factor 100), but results for autocorrelation are
similar to the additive noise case. The increase in variance in the multiplicative noise
case is specific to the conceptual model and results from the increasing sensitivity of V ∗

to precipitation changes when P is reduced (Fig. 1). Without any P -V -feedback (k = 0)
there would still be an increase in variance in the multiplicative noise case, but not in10

the additive noise case.
To obtain sufficiently precise estimates of the statistical properties in Fig. 2 we per-

formed stationary time series of 10 million data points each for different values of B. In
a transient situation where the sampling error is much larger, the collapse of element 2
would hardly be predictable with EWS.15

3.2 Second example: collective bistability

To pursue this further, we now consider a system (system 2) with a different number of
elements, distinguishing versions with 1, 2, 5, 10, and 20 elements, where any partic-
ular element has the identical parameters P0i

= 0, si = 1, and ki j = 300/N. By dividing
the entries of interaction matrix k by the number of elements in the system, we equally20

distribute the P -V -feedback over all elements. When more and more elements are cou-
pled, the spatial resolution increases but the bifurcation diagram of this globally coupled
system (Fig. 3a) does not change. As local feedbacks (determined by ki i ) are weak,
no single element is bistable anymore. This fact distinguishes our model from those
in Guttal and Jayaprakash (2009), Dakos et al. (2010) and Donangelo et al. (2010),25

where individually bistable elements are coupled. However, the system as a whole still
shows a bifurcation due to the spatial interactions ki j with i 6= j .
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As we couple more and more elements, it is evident that EWS like rising autocorre-
lation and variance at individual elements, as well as rising cross-correlation, tend to
disappear (Fig. 3b–d). Again, variance in the multiplicative noise case (Fig. 3e) is an
exception due to the increased slope in V ∗(P ).

The one element-case here (red curves in Fig. 3) is identical to element 1 from the5

2-element-mode (red curves in Fig. 2), and also to the system in Fig. 1 in Bathiany et al.
(2012b). For EWS to appear properly like in this single element case, the system’s time
series need to be projected on the critical mode of the transition, a technique introduced
as “degenerate fingerprinting” by Held and Kleinen (2004). The critical mode implies
the direction in phase space in which the bifurcation occurs. Hence, if the critical mode10

of the transition is not known beforehand, the tipping can be unpredictable even in
cases of very long time series.

4 Early Warning Signal – based hotspot detection method

So far we have chosen systems of simple structure. In a more general case like a
spatially resolved climate model, the stability structure will be more complicated. Cer-15

tain subsystems of the climate may show a loss of stability during a change in external
forcing while the rest of the system may respond only indirectly, or even evolve indepen-
dently. In Sect. 3 we documented that in multidimensional settings individual elements
can fail to show EWS before a sudden transition. While this constitutes a caveat for
the prediction of sudden transitions, one may make a virtue out of this caveat by using20

EWS to diagnostically infer information on the causality of a sudden transition. In terms
of system 1, we aim at finding the nucleus of slowing down (hotspot) by distinguishing
elements of the red and the blue kind. This is not possible by looking at the system’s
state directly, because red and blue elements collapse in synchrony. Of course, in com-
plex systems there will be a continuum from red to blue and the definition of a threshold25

in between will be somewhat arbitrary. In principle, we expect that the hotspot can be
identified as the combination of elements which (when projected on their critical mode)
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maximizes an indicator of slowing down. In the following, we present an algorithm for
hotspot detection which we apply to our stochastic model.

4.1 Highly idealized North African vegetation dynamics

As yet another example of the stochastic model framework in Sect. 2, consider 25 ele-
ments which can be interpreted as a highly idealized Northern Africa (Fig. 4). We refer5

to this system as system 3. Again we chose parameter values which lead to precon-
ceived properties of the model: 5 of the 25 elements gradually become desert when B
is reduced (brown elements). 5 elements stay mostly vegetated (green elements), a set
of 9 elements becomes bistable and finally collapses due to a saddle-node bifurcation
(red elements) and 6 elements substantially depend on the red ones but show a much10

weaker local atmosphere-vegetation feedback (blue elements; see Fig. 5). Elements
with identical colours have identical parameter values and thus have the same state in
equilibrium. Hence, there are 4 si and P0i

(Table 1), and 16 ki j (Table 2). In similarity
to the examples in Sect. 3.2, no element is bistable on its own, as local feedbacks ki i
are too small. It is only due to the strong spatial interactions between the red elements15

that the system can bifurcate and thus show a vegetation collapse at B ≈ 43.
The nucleus of the transition is the red area because this is where the system loses

stability due to strong atmosphere-vegetation interaction. In the following, we refer to
the red area as a hotspot.

4.2 Recipe for hotspot detection in case of additive noise20

We now explain our method of analysis by applying it to system 3 with additive noise.
The analysis is applied to several preferably long stationary time slices for fixed but
different forcings Bj (j = 1, 2, ..., J) below the tipping point. Here we chose time series
of vegetation cover for B1 = 150, B2 = 90, B3 = 55, and B4 = 43 (vertical dashed lines
in Fig. 5) with 100 000 yr each. All steps that follow are an analysis of these time series25

and do not involve the model which generated them. We now describe the individual
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steps of the analysis by starting with part B in Fig. 6, as this part of the analysis cor-
responds to the original degenerate fingerprinting by Held and Kleinen (2004), without
time aggregation:

B1. For a given part of the system with Np elements, we select a subset of n elements
from these Np elements. We refer to the number of elements in the complete5

system as N (here: 25), and the number of elements in a part of the system as
Np.

B2. For the n selected elements we calculate the leading EOF (eigenvector of the
correlation matrix which represents the largest variance) for the last simulation
(here: B4). The analysis is based on the assumption that this pattern resembles10

the critical mode, if the selected area is the hotspot. To construct the EOFs we
use the freely-available linear algebra package LAPACK.

B3. We project the n time series of every time slice on this EOF. In case of the last
simulation J this projection is the principal component of the EOF.

B4. We calculate an EWS, here the autocorrelation at lag 1 (AC), of the corresponding15

projections. The result is a curve of J points of AC versus B, just like those in
Figs. 2b and 3b, but less well resolved.

To automatically compare the results for different areas, we expand this degenerate
fingerprinting method with the following steps:

B5 As it is not the absolute value of AC but its increase which indicates slowing down,20

we shift the curve vertically in order to be 0 at j = 1.

B6 We integrate the AC change over B (calculate the area of the J −1 segments).
We do so to take into account not only the difference between the first and last B,
but the whole evolution of AC as is suggested by our results in Fig. 2. We refer to
this quantity as the signal.25
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We repeat steps B1–6 for all possible combinations of elements. If the Np elements
mentioned in step 1 represent the whole system under consideration (Np = N), one
can then determine the area with the maximum signal, or the areas with a signal above
a certain threshold. However, this requires the calculation of 2N−1 such signals (minus
1 because selecting 0 elements is not an option). This becomes unfeasible already for5

N beyond 10. Therefore, not all possible combinations can be calculated and we use an
iterative selection process to decide which elements can be dropped from the analysis:

A. We randomly devide the whole system into a number of non-overlapping parts.
The number of parts is calculated from the fixed parameter nmax via the ceiling
function d N

nmax
e. The number of parts is thus as small as possible for a given nmax.10

The size of each part is then determined by distributing the N elements as equally
as possible, so that each Np fulfills 2 <= Np <= nmax.

B. For each part, steps 1–6 are applied. As an example, imagine that system 3 is
analyzed with nmax = 3. Hence, the system is subdivided into 9 parts, of which
7 parts contain 3 elements, and 2 parts contain 2 elements. Table 3 gives an15

example of all areas and their associated signals for a part which consists of
elements 13, 18, and 23.

C. From a signal list like Table 3 the contribution of different elements can be disen-
tangled, with the aim to drop unimportant elements from the analysis completely.
For any specific element, we add up the signals of all areas this element is part20

of (last row, second column in Table 3), and refer to it as the element’s weight. In
our example, elements 13 and 18 belong to the hotspot, so they contribute much
more to the signal than element 23, whose weight is therefore smaller. Element
23 should thus be more likely to be removed from the analysis. In principle, our
selection process resembles the logic of a football world cup: each team (element)25

does not compete directly against every other team, but only against those of the
same group (part). Only teams performing well enough in their group remain in
the tournament.
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D. As a criterion for removing elements we set a threshold weight which is adjusted
interactively to prevent that too many elements are removed too early. Here, we
set the initial threshold tini to 5 % of the maximum weight. The absolute value
of this threshold depends on the maximum weight in each part. As long as no
element can be removed in any part, we increase the threshold by tinc =5 %. If the5

threshold would reach or exceeded the maximum weight, we set the threshold to
99.5 %. If at least one element can be removed we reset the threshold to its initial
value tini. In both cases, we repeat from step A with all the remaining elements.

This way, the considered number of elements is gradually reduced. The procedure ends
as soon as one of the following conditions is true: (1) the total number of remaining10

elements is not larger than nmax, in which case the analysis is repeated one last time
with one part only. (2) The relative threshold reaches 99.5 %, but still no elements can
be removed because the remaining elements are too similar to be discriminated.

The procedure serves as a sieve in order to filter out the important elements with a
feasible number of calculations. As the results depend on the random distribution of15

elements to different parts, they will be very similar but not completely identical when
the analysis is repeated. The hotspot of slowing down can be identified if the time
series is long enough (or if enough realizations are available), because the remaining
elements at the end of the analysis tend to contribute most to slowing down.

To obtain more quantitative results, all signals calculated during the procedure can20

be collected in a sorted list for further analysis. Elements belonging to the hotspot tend
to be part of the areas with the strongest signals and are on top of the list (Fig. 7). How-
ever, elements that have been removed early during the analysis are not well sampled.
The method therefore only provides information on the nature of the hotspot, but less
on the stability properties of the rest of the system.25
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4.3 Recipe for hotspot detection in case of multiplicative noise

Although the algorithm can be applied to time series from model 3 with multiplicative
noise in exactly the same way, its performance can be improved compared to the ad-
ditive noise case by making the following changes:

B2. To calculate an EOF we now use the covariance matrix instead of the correlation5

matrix.

B3. We calculate the leading EOF not only for the last time slice BJ , but also for all
previous time slices from j = 2 to J . For every EOFj , we project all time slices
(from B1 to Bj ) on EOFj . We then obtain J-1 curves of autocorrelation changes
(Fig. 8).10

B6. To compare the different areas, we perform a double integration. In terms of Fig.
8: first, we calculate the area under a curve with a certain colour for EOFB=90
(Fig. 8a), EOFB=55 (Fig. 8b), and EOFB=43 (Fig. 8c). The resuling trajectory of
integrated AC changes is then again integrated over B. This way, not only the
shape of the projection on the last EOF is accounted for, but also the shape of15

previous projections.

C. We devide the signal list in the set of signals above the current threshold and the
set of signals below this threshold. All elements which are part of any area above
the threshold remain, the other elements are removed. Hence, the threshold is di-
rectly applied to the signals itself without the calculation of weights. This measure20

allows a better discrimination of the elements. In the additive noise case, it cannot
be applied, because there the maximum signal usually belongs to the complete
area.

We will refer to the last three points as elimination rule 2, while the strategy in the
additive noise case is referred to as elimination rule 1.25
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What motivates us to make these modifications? While for the additive noise case
the AC’s trajectories at the hotspot (red area) and the complete area always look alike
(not shown), they differ substantially in the multiplicative case: At the hotspot the signal
starts to emerge early, even when projecting on a leading EOF far from the tipping point
(red curves in Fig. 8). This is not the case for the other areas because the variability of5

the system differs substantially from the critical mode. As variances at the hotspot are
very small, the EOF pronounces other elements than the hotspot and slowing down
will thus not be observed in the projection. Close to the tipping point, the variance at
the hotspot increases not only due to slowing down, but also due to the multiplicative
noise which enhances variance as vegetation cover decreases. Therefore, the relative10

increase in variance is particularly large at the hotspot. Close to the tipping point, the
system’s variability becomes dominated by the critical mode and slowing down can be
seen in the complete as well as the hotspot area. By making the above changes we
use this property of the system to better distinguish the elements from each other. As a
result, the hotspot can be detected much easier than in the additive noise case. Using15

time series of 10 000 yr each, the hotspot is clearly visible in the signal list for nmax = 5
(Fig. 9).

4.4 Performance analysis

It has become obvious in the previous sections that the algorithm involves a number
of options and parameter values which have to be chosen in advance. Also, the per-20

formance of the method will depend on properties of the original time series. For a
quantitative comparison of the algorithm’s performance under different conditions, we
perform 500 Monte Carlo experiments for each condition, using lag-1-autocorrelation
(Table 4) and relative variance increase (Table 5) as EWS.

In each experiment a new realization of the time series is generated with system 325

and then analyzed with the hotspot detection algorithm. Figure 10 shows a frequency
distribution of elements which remain at the end of each experiment for the additive
noise case and a time series length of 2000 yr. After the 500 repetitions we evaluate
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which fraction f1 of the 500×nmax potentially identified elements belongs to the hotspot,
and which fraction f2 of the actually obtained elements belongs to the hotspot. f1 and
f2 can differ because it is not always nmax elements that remain in the end.

As a measure of the method’s performance η we define for both variants of f :

η1,2 = (f1,2 −
H
N

)/(1− H
N

), (4)5

with N as the size of the system (25) and H as the size of the hotspot (9). If we as-
sume that all 25 elements have an equal chance to be selected, the probability for any
obtained element to be part of the hotspot is H/N = 9/25. A detection which does not
differ from this random case has performance 0.

If exactly nmax elements are returned in every experiment, a detection which only10

returns hotspot elements has performance 1 for both variants of f (which is of course
only possible because we chose an nmax smaller than the hotspot). The expectation
value for the frequency of every element would be 100 in case of performance 0 (the
solid black line in Fig. 10), and 500×5/9 in case of performance 1 (end of vertical
scale in Fig. 10). Potential deviations from nmax elements in the output can lead to15

performances lower than 0 and larger than 1 if we apply f1.
The decision for 500 repetitions can be justified by bootstrapping our Monte Carlo

results (Efron, 1979): for any list of 500 sets of residual elements we draw n sets
and measure their performances. We calculate the standard deviation of the obtained
performances for many different n. It turns out that for 500 repetitions the standard20

deviation is approx. 0.015, and rather independent of the parameter and time series
properties. Therefore we round all performances in Tables 4 and 5 to 2 decimal places.
Above 500 repetitions, the uncertainty of the performance decreases very slowly while
the computation time for the Monte Carlo experiments increases beyond feasibility.

From the performances in Tables 4 and 5 as well as the qualitative appearance25

of the resulting signal lists we draw the following conclusions with regard to different
parameter choices and time series properties:
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– The initial threshold tini and increment tinc should be chosen small (a few per-
cent of the maximum signal). If they are larger, the calculation is faster and not
necessarily worse in performance, but the signal list will not be well sampled. A
better sampling of each element’s contribution to the signal allows a clearer dis-
crimination between the elements in figures like Figs. 7 and 9. Particularly low η15

for some larger tinc result from the effect that too many elements are removed at
once after increasing the threshold.

– The maximum number of elements per part nmax can be chosen small for first
results. The smaller nmax, the faster the algorithm. When repeating the analysis
with larger nmax, the signal list gives an indication of the size of the hotspot (or10

hotspots). As long as the maximum signal in the list clearly increases with nmax,
the number of elements which form a common hotspot is larger than nmax. As
Figs. 7 and 9 document, the full hotspot may already be identified for nmax smaller
than the hotspot, if tini and tinc are small to allow a robustly sampled signal list.

– Each EOF can be calculated as an eigenvector of the system’s covariance matrix15

or alternatively its correlation matrix. If based on the covariance matrix, elements
with large variance will be emphasized. Whether this improves the performance
of a hotspot detection generally depends on the system under analysis.

– The choice of time slices should cover a range of B where the changes in steady
state are already pronounced to achieve a good signal to noise ratio.20

– The best definition of a signal and the best elimination rule depend on the system.
In general, other strategies than ER 1 and 2 could be devised that may be taylored
to a specific system. Although ER 1 should be applicable to any system, it may
not lead to the most robust results as our multiplicative noise case demonstrates.

– Other EWS than autocorrelation can be used within the same framework. Relative25

increases in variance usually show better performances (Table 5) because of a
larger signal-to-noise ratio (also see Ditlevsen and Johnsen, 2010).

660

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 643–682, 2012

Detecting hotspots
via slowing down –

Part 1

S. Bathiany et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

– The length T of the time series as compared to the key variable’s time scale τ has
a major influence on the method’s performance. As the time series provide only a
limited sample, the performance will increase with T . If a single available realiza-
tion of the time series is too short, the statistical properties of the variations are
unsufficiently sampled and a hotspot detection can yield wrong results. It should5

therefore be checked whether the identified hotspot is robust to T by comparing
different parts of the time series. Methods of block bootstrapping suited for time
series (Politis, 2003) could in principle be applied to the full analysis to derive
uncertainty estimates.

5 Summary and conclusions10

By applying a simple stochastic model we have demonstrated that EWS at individual
elements of a coupled system are no generic precursors of a sudden transition at a
tipping point. If the local feedback of a particular element is weak or if the element’s
tipping is induced by other elements, EWS are not apparent until the bifurcation pa-
rameter is very close to its critical point. In this case the signal cannot be called early15

anymore, and a prediction of a sudden transition, together with the area where it will
occur, must fail. On the other hand, we documented that indicators of slowing down
can potentially be used to infer knowledge on the causality of a sudden transition from
sufficiently long time series. To this end, we devised an algorithm to detect the hotspot
or hotspots of slowing down in a many-element system. As slowing down indicates a20

loss in stability of the current state, the detected hotspot indicates a region where the
system’s susceptibility to perturbations becomes large.

Although our system is meant to represent the vegetation-atmosphere interaction in
Northern Africa, the method of analysis is generic in the sense that it can be applied to
any system satisfying the basic assumptions common to EWS approaches:25

– The system is supposed to be close to a deterministic state (in terms of dynamical
systems, a slow manifold), which loses stability.

661

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 643–682, 2012

Detecting hotspots
via slowing down –

Part 1

S. Bathiany et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

– The system’s variability results from small white noise.

It should be noted that the existence of a bifurcation is not a prerequisite of our method.
Even in the case of weaker feedbacks and a more gradual transition will a change in
stability be reflected in slowing down. However, the detectability of the signal tends to
decrease as compared to a bifurcation where the system approaches a random walk.5

The main difference to previous applications of EWS is that our method does not only
calculate the magnitude of slowing down but also identifies the subsystem where it
occurs.

In principle, a prediction of sudden transitions could also be attempted with this ap-
proach. As new data points become available, new EOFs and projections may be con-10

structed. As for any prediction based on EWS it must of course be known in advance
which maximum signal is to be expected (Thompson and Sieber, 2011). For example,
autocorrelation only comes close to 1 when there is a bifurcation, but peaks at lower
values in less extreme cases.

In addition, the very large data requirements imply a vast separation between the15

time scale of changing external conditions and the intrinsic time scale of the system,
a condition that is not often satisified. For our system 3, several 10 000–100 000 yr
long time slices (with the vegetation’s time scale being 5 yr) were required for a robust
hotspot detection. However, the method’s performance generally depends on proper-
ties of the analyzed system. The stronger the slowing down and the more pronounced20

the hotspot, the easier its detection.
Although we focus on autocorrelation and temporal variability, other indicators of

slowing down such as spatial variability could be applied within the same iterative
framework and may lead to better performances. As our additive and multiplicative
noise case illustrate, the more the analysis method is taylored to a specific system,25

the more a priori knowledge on the data generating process is needed. For example,
variance may increase or decrease when approaching a threshold, depending on the
system under consideration (Brock and Carpenter, 2010; Dakos et al., 2012).
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Additional caveats are imposed by unaccounted or changing properties of the exter-
nal noise, which would affect EWS (Carpenter and Brock, 2006; Scheffer et al., 2009;
Ditlevsen and Johnsen, 2010). In particular, we have only used white noise which is
uncorrelated in space. However, it would physically be more reasonable to account for
spatial correlations in the atmospheric variability. This could reduce the detectability of5

hotspots, because correlations between the state variables could not be attributed to
spatial interactions alone, but would partly result from correlations in the noise.

Other problems may arise in cases of large noise. The local stability of the deter-
ministic state may not be represented well anymore in EWS, and the noise can lead to
an early tipping. More fundamentally, the system’s mean behaviour in the large noise10

regime may not reflect its deterministic structure anymore due to noise-induced transi-
tions (Horsthemke and Lefever, 1984). The link between a system’s susceptibility and
statistical properties of its variability breaks down under such conditions.

Within these limitations, our results suggest an alternative applicability of EWS which
may contribute to a better understanding of numerical models. In this regard our study15

is a concretion of Lenton’s recent conclusion: “even if further research shows that early
warning is unachievable in practice, it could still provide valuable information on the
vulnerability of various tipping elements to noise-induced changes.” (Lenton, 2011). To
this end, more systematic studies on the performance of indicators of slowing down for
different classes of models will be particularly beneficial.20
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Table 1. Parameters P0i
and si in example system 3 for 4 different types of elements. Colours

correspond to those in Fig. 4.

red blue green brown

P0 −50 40 210 40
s 1.7 0.8 0.2 0.9
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Table 2. Interaction matrix k of system 3, distinguishing 4 different types of elements. Colours
correspond to those in Fig. 4. A number in some row A and column B stands for the impact of
any single element of type B on any single element of type A (for example: impact of red on
blue: 15, impact of blue on red: 5).

red blue green brown

red 27 5 10 10
blue 15 4 3 3
green 8 2 15 2
brown 2 3 2 5
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Table 3. Example signal list for elements 13, 18 and 23 from system 3 (additive noise case).

area signal × 1000

23 1.97
18 10.61

18, 23 10.74
13 12.27

13, 23 12.26
13, 18 17.48

13, 18, 23 17.50

weights (13,18,23): 59.51, 56.33, 42.47
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Table 4. Performances of the hotspot detection scheme for different parameter choices and
time series properties with lag-1-autocorrelation increase as EWS. ER stands for elimination
rule (for an explanation of this and other options see text). Performances are calculated from
fractions f1, italic results in parenthesis from f2 (see Sect. 4.4).

parameters for hotspot detection time series properties

ER EOF nmax tini tinc time slices Bi τ noise T = 1000 T = 2000 T = 5000 T = 10000

1 corr. 5 5 % 5 % (150, 90, 55, 43) 5 add. 0.16 (0.22) 0.27 (0.33) 0.41 (0.50) 0.56 (0.69)
1 covar. 5 5 % 5 % (150, 90, 55, 43) 5 add. 0.13 (0.19) 0.24 (0.30) 0.43 (0.54) 0.54 (0.68)

1 corr. 5 5 % 5 % (150, 90, 55, 43) 2.5 add. 0.29 (0.36) 0.40 (0.48) 0.55 (0.70) 0.66 (0.84)

1 corr. 3 5 % 5 % (150, 90, 55, 43) 5 add. 0.19 (0.22) 0.29 (0.34) 0.44 (0.51) 0.58 (0.67 )
1 corr. 7 5 % 5 % (150, 90, 55, 43) 5 add. 0.13 (0.18) 0.24 (0.31) 0.39 (0.49) 0.49 (0.60)

1 corr. 5 5 % 5 % (300, 200, 100, 75, 43) 5 add. 0.10 (0.13) 0.13 (0.18) 0.23 (0.30) 0.37 (0.46)
1 corr. 5 5 % 5 % (150, 90, 55) 5 add. 0.04 (0.08) 0.12 (0.16) 0.21 (0.27 ) 0.36 (0.43)

1 corr. 5 5 % 1 % (150, 90, 55, 43) 5 add. 0.18 (0.19) 0.28 (0.30) 0.45 (0.47 ) 0.63 (0.67 )
1 corr. 5 5 % 2,5 % (150, 90, 55, 43) 5 add. 0.17 (0.20) 0.28 (0.32) 0.46 (0.51) 0.62 (0.69)
1 corr. 5 5 % 7,5 % (150, 90, 55, 43) 5 add. 0.17 (0.24) 0.22 (0.31) 0.40 (0.51) 0.49 (0.68)
1 corr. 5 5 % 10 % (150, 90, 55, 43) 5 add. 0.13 (0.23) 0.20 (0.31) 0.37 (0.53) 0.47 (0.70)
1 corr. 5 5 % 12,5 % (150, 90, 55, 43) 5 add. 0.12 (0.23) 0.21 (0.35) 0.32 (0.52) 0.44 (0.67 )
1 corr. 5 5 % 15 % (150, 90, 55, 43) 5 add. 0.08 (0.23) 0.21 (0.37 ) 0.28 (0.56) 0.37 (0.70)
1 corr. 5 5 % 17,5 % (150, 90, 55, 43) 5 add. 0.08 (0.24) 0.17 (0.37 ) 0.30 (0.54) 0.41 (0.67 )
1 corr. 5 5 % 20 % (150, 90, 55, 43) 5 add. 0.11 (0.27 ) 0.19 (0.37 ) 0.30 (0.54) 0.27 (0.69)
1 corr. 5 5 % 30 % (150, 90, 55, 43) 5 add. -0.01 (0.27 ) 0.11 (0.42) 0.26 (0.54) 0.36 (0.68)
1 corr. 5 5 % 40 % (150, 90, 55, 43) 5 add. 0.11 (0.28) 0.21 (0.39) 0.28 (0.54) 0.30 (0.68)
1 corr. 5 5 % 50 % (150, 90, 55, 43) 5 add. -0.08 (0.31) 0.05 (0.39) 0.27 (0.51) 0.44 (0.59)
1 corr. 5 5 % 100 % (150, 90, 55, 43) 5 add. 0.10 (0.27 ) 0.23 (0.33) 0.37 (0.47 ) 0.46 (0.54)
1 corr. 5 80 % 5 % (150, 90, 55, 43) 5 add. 0.12 (0.27 ) 0.25 (0.39) 0.41 (0.53) 0.56 (0.69)

2 covar. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.60 (0.62) 0.66 (0.66) 0.87 (0.84) 1.10 (0.94)
1 covar. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.29 (0.36) 0.44 (0.53) 0.61 (0.71) 0.74 (0.87 )
2 corr. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.43 (0.46) 0.50 (0.53) 0.70 (0.64) 0.95 (0.70)
1 corr. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.31 (0.38) 0.40 (0.48) 0.56 (0.65) 0.67 (0.81)

2 covar. 5 5 % 5 % (300, 200, 100, 75, 43) 5 mult. 0.57 (0.62) 0.64 (0.66) 0.71 (0.71) 0.82 (0.79)
2 covar. 5 5 % 5 % (150, 90, 55) 5 mult. 0.68 (0.69) 0.74 (0.75) 0.87 (0.85) 1.09 (0.96)

2 covar. 5 5 % 5 % (150, 90, 55, 43) 2.5 mult. 0.64 (0.67 ) 0.79 (0.79) 1.12 (0.94) 1.63 (0.99)

671

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 643–682, 2012

Detecting hotspots
via slowing down –

Part 1

S. Bathiany et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 5. As Table 4, but for relative variance increase as EWS.

parameters for hotspot detection time series properties

ER EOF nmax tini tinc time slices Bi τ noise T = 1000 T = 2000 T = 5000 T = 10 000

1 corr. 5 5 % 5 % (150, 90, 55, 43) 5 add. 0.28 (0.33) 0.43 (0.51) 0.60 (0.74) 0.67 (0.86)
1 covar. 5 5 % 5 % (150, 90, 55, 43) 5 add. 0.29 (0.36) 0.42 (0.51) 0.62 (0.75) 0.71 (0.87 )

1 corr. 5 5% 5 % (150, 90, 55, 43) 2.5 add. 0.38 (0.45) 0.53 (0.63) 0.67 (0.83) 0.73 (0.94)

1 corr. 5 5 % 1 % (150, 90, 55, 43) 5 add. 0.31 (0.33) 0.48 (0.50) 0.69 (0.72) 0.81 (0.85)
1 corr. 5 5 % 2,5 % (150, 90, 55, 43) 5 add. 0.32 (0.35) 0.45 (0.50) 0.64 (0.71) 0.76 (0.86)
1 corr. 5 5 % 7,5 % (150, 90, 55, 43) 5 add. 0.27 (0.36) 0.41 (0.51) 0.57 (0.73) 0.62 (0.87 )
1 corr. 5 5 % 10 % (150, 90, 55, 43) 5 add. 0.28 (0.39) 0.41 (0.56) 0.51 (0.74) 0.59 (0.86)
1 corr. 5 5 % 12,5 % (150, 90, 55, 43) 5 add. 0.22 (0.36) 0.35 (0.55) 0.48 (0.74) 0.60 (0.88)
1 corr. 5 5 % 15 % (150, 90, 55, 43) 5 add. 0.20 (0.38) 0.31 (0.55) 0.42 (0.75) 0.54 (0.87 )
1 corr. 5 5 % 17,5 % (150, 90, 55, 43) 5 add. 0.19 (0.38) 0.28 (0.57 ) 0.45 (0.74) 0.56 (0.86)
1 corr. 5 5 % 20 % (150, 90, 55, 43) 5 add. 0.25 (0.43) 0.33 (0.56) 0.34 (0.75) 0.23 (0.88)
1 corr. 5 5 % 30 % (150, 90, 55, 43) 5 add. 0.10 (0.42) 0.21 (0.51) 0.42 (0.74) 0.50 (0.85)
1 corr. 5 5 % 40 % (150, 90, 55, 43) 5 add. 0.20 (0.39) 0.30 (0.54) 0.33 (0.74) 0.27 (0.88)
1 corr. 5 5 % 50 % (150, 90, 55, 43) 5 add. 0.06 (0.43) 0.24 (0.51) 0.45 (0.65) 0.54 (0.71)
1 corr. 5 5 % 100 % (150, 90, 55, 43) 5 add. 0.22 (0.35) 0.36 (0.45) 0.49 (0.59) 0.57 (0.70)
1 corr. 5 80 % 5 % (150, 90, 55, 43) 5 add. 0.27 (0.43) 0.41 (0.55) 0.60 (0.74) 0.69 (0.87 )

2 covar. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 1.70 (1.00) 2.04 (1.00) 2.22 (1.00) 2.25 (1.00)
1 covar. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.68 (1.00) 0.53 (1.00) 0.32 (1.00) 0.37 (1.00)
2 corr. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 1.59 (1.00) 1.99 (1.00) 2.21 (1.00) 2.25 (1.00)
1 corr. 5 5 % 5 % (150, 90, 55, 43) 5 mult. 0.69 (1.00) 0.50 (1.00) 0.31 (1.00) 0.36 (1.00)
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Fig. 1. Stability diagram for the one-dimensional conceptual model with k = 300 mm. Blue
lines: equilibrium precipitation, calculated from P ∗(V ) = Pd+kV for different Pd. Green line: equi-
librium vegetation cover V ∗(P ) (Eq. 1).
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Fig. 2. Characteristics of system 1 in dependency on parameter B. (a) Equilibrium vegetation
cover, (b) autocorrelation (lag 1), (c) variance (additive noise only), (d) variance (multiplicative
noise only).
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Fig. 3. Characteristics of system 2 in dependency on parameter B for versions with a dif-
ferent number of elements. (a) Equilibrium vegetation cover (identical for any number of ele-
ments), (b) autocorrelation (lag 1), (c) crosscorrelation (no lag), (d) variance (additive noise
only), (e) variance (multiplicative noise only).

675

http://www.earth-syst-dynam-discuss.net
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-print.pdf
http://www.earth-syst-dynam-discuss.net/3/643/2012/esdd-3-643-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


ESDD
3, 643–682, 2012

Detecting hotspots
via slowing down –

Part 1

S. Bathiany et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Fig. 4. Structure of system 3. Red: area with strong P -V -feedback (hotspot), blue: passively
dependent on red area, brown: dry area, green: moist area.
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Fig. 5. Equilibrium vegetation cover at different elements of system 3 and for different bifurca-
tion parameter values B. The colours correspond to the elements in Fig. 4. The vertical black
dashed lines indicate the values of B used for the four stationary simulations (the smallest one
also lying above the tipping point).
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Fig. 6. General flowchart of the hotspot detection algorithm.
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Fig. 7. Signal list for system 3 with additive noise using time series of 100 000 yr. Ordinate: ab-
solute signal; abscissa: elements of the system. Any area that has been calculated during the
analysis is represented at the ordinate value of its signal. All elements that are part of this
area are marked as blue dots. Parameters are tinc =5 %, tini =5 %, and nmax =5. The EOF is
calculated from the correlation matrix.
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Fig. 8. Autocorrelation changes of projections on leading EOFs. The leading EOFs have been
calculated for (a) B2 =90, (b) B3 =55, (c) B4 =43. In each case, all previous time series (includ-
ing the one used for the EOF) are projected on the according EOF. The analysis is applied to the
full system (black) as well as only parts of the system (other colours). The colours correspond
to the elements in Fig. 4.
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Fig. 9. Signal list for system 3 with multiplicative noise and time series of 10 000 yr. Ordinate:
absolute signal; abscissa: elements of the system. Any area that has been calculated during
the analysis is represented at the ordinate value of its signal. All elements that are part of this
area are marked as blue dots. Parameters are tinc =5 %, tini =5 %, and nmax =5. The EOF is
calculated from the covariance matrix.
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Fig. 10. Performance of the hotspot detection scheme for system 3 with additive noise using
time series of 2000 yr. The frequencies show the number of times a particular element remains
until the end of the selection process for 500 repetitions. Each repetition involves the generation
of a new time series and its analysis with the hotspot detection algorithm. The solid black
line marks the expectation value for a random selection where all elements are selected with
equal probability. The red dashed line marks the 95% probability threshold of the corresponding
cumulative binomial distribution. Parameters are tinc =5 %, tini =5 %, and nmax =5. The EOF is
calculated from the correlation matrix.
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